

Global Fishery Collapse and the Fate of Human Nutrition

Frisk med Fisk utan Risk ?- Sjömatens betydelse för hälsa och miljö

Dr. Chris Golden Assistant Professor of Nutrition and Planetary Health E-mail: <u>golden@hsph.harvard.edu</u>

HARVARD T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Environmental Change as Public Health Risk

The Importance of Animal Source Foods

Fish Catch Declines and Micronutrient Nutrition

The World Is Running Out of Fish Faster Than We Thought

FROM THE NEWS WIRES

Death of coral reefs could devastate nations

As studies predict that vital coral reefs are headed for extinction worldwide, experts say hunger, poverty, and political instability could ensue.

By Brian Skoloff, AP MARCH 26, 2010

Global warming could cause fishing to decline by millions of tons each year, study

Says The San Diego Union-Tribune

WHO WE ARE WH

WHAT WE DO

Who We Are / News

FEATURE STORY

Global Fisheries' Sunken Billions

February 14, 2017

THETIS: Tracking Health and Ecosystem Transformation in the Seas

Planetary Health (PI)

Nutritional Epidemiology

Human Geography

Climate Impacts Ocean Health Fisheries Ecology Catch Histories Fisheries Economics Fisheries Governance

Declining Fish Catch

Aquaculture/Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

Declining Fish Catch

Aquaculture/Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

CHANGE IN MAXIMUM FISH CATCH POTENTIAL 2041-2060 relative to 1981 – 2000

Cheung et al. update of IPCC (2014) AR5 WGII

Declining Fish Catch

Aquaculture/Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

Why Is Fish Nutritionally Important?

KEY NUTRIENTS IN SEAFOOD:

Long chain omega-3 fats

Mainly found in fish and seafood. these fatty acids are essential for optimal brain development.

lodine

Seafood is in practice the only natural source of this crucial nutrient, lodine serves several purposes like aiding thyroid function. It is also essential for neurodevelopment.

Vitamin D

Another nutrient crucial for mental development, this vitamin also regulates the immune system function and is essential for bone health.

Iron

During pregnancy, iron intake is crucial so that the mother can produce additional blood for herself and the baby.

Calcium, zinc, other minerals

Diets without dairy products often lack calcium, and zinc deficiency slows a child's development. nature

Predicting nutrient content of ray-finned fishes using phylogenetic information

Bapu Vaitla¹, David Collar¹, Matthew R. Smith¹, Samuel S. Myers^{3,4}, Benjamin L. Rice⁵ & Christopher D. Golden^{1,3}

Nutrient	Source threshold (/100g)	Rich source threshold		
Protein	7.65 g	15.3 g		
Iron	1.95 mg	3.9 mg		
Zinc	1.425 mg	2.85 mg		
Vitamin A	120 mcg	240 mcg		
Vitamin B12	0.75 mcg	1.5 mcg		
Vitamin D	0.36 mcg	0.72 mcg		

Summary	Protein	Iron	Zinc	Vitamin A	Vitamin B12
Valid species, n	372	345	178	143	122
# Source	17	33	15		15
# Rich Source	348	11	10	7	99
# Source or Rich Source	365	44	25	14	114
% Source	4.57	9.57	8.43	4.90	12.30
% Rich Source	93.55	3.19	5.62	4.90	81.15
% Source or Rich Source	98.12	12.75	14.04	9.79	93.44

Declining Fish Catch

Aquaculture/Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

Three Typologies

Unaffected wealthy nations

Increasing undernutrition

Acceleration of nutrition transition

Declining Fish Catch

Aquaculture/Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

Nutrition: Fall in fish catch threatens human health

Christopher D. Golden, Edward H. Allison, William W. L. Cheung, Madan M. Dey, Benjamin S. Halpern, Douglas J. McCauley, Matthew Smith, Bapu Vaitla, Dirk Zeller

& Samuel S. Myers

Projected percentage change in maximum marine catch potential by 2050 relative to 2000 levels

Declining Fish Catch

Aquaculture/ Fisheries Management

Alternative Foods

Nutritional Vulnerability

Dietary Change

Aquaculture is Insufficient

Life Cycle Assessment in Aquaculture

Fisheries Management and Marine Conservation as a Nutritional Intervention

Froese et al. 2012

Increasing Fish Catch

Aquaculture/Fisheries Management

Strengthening Resilient Food Systems

Nutritional Security

Positive Dietary Change

Interactive Dynamics of Reef Fisheries and Human Health in Kiribati

Nutrition Transitions

Top 10 Most Obese Nations (%)

© Clinic Compare

Health assessment

Fingerstick of blood (Point of Care)

- Metabolic disease markers (total cholesterol, HDL and LDL, triglycerides, and glucose)
- Hemoglobin A1c (diabetes)
- Hemoglobin (anemia)
- Fatty acid profiles of 23 different fatty acids incl. DHA & EPA

Anthropometry and Diagnostics

- Blood pressure
- Standard anthropometry (height/length, weight)
- Abdominal circumference

Acknowledgments

- Katy Seto, Jessica Gephart, Jacob Eurich, Doug McCauley
- Mike Sharp, Andy Halford, and the Secretariat of the Pacific
- Neil Andrew and the Pathways program
- Alon Shepon, Gidon Eshel, Robert Jones, Max Troell, Patrik Henriksson
- Sam Myers, Bapu Vaitla, Eddie Allison

